

Free-electron laser extreme ultraviolet lithography: considerations for high-volume manufacturing

Erik R. Hosler, Obert R. Wood II, Moshe E. Preil GLOBALFOUNDRIES

William A. Barletta

Massachusetts Institute of Technology

Extreme-Ultraviolet Lithography High-Volume Manufacturing

- An EUV high-volume manufacturing (HVM) source has yet to be demonstrated
- Will laser-produced plasma (LPP) execute to HVM powers, or is another source required?
 - Current EUVL tools are targeting 500 exposures per day at 15 mJ/cm²
 - A mature HVM technology may require upwards of 50k wafers per month
 - 5-10 EUV layers at 7 nm node
 - Possible >50 mJ/cm² dose requirement
- Enter Free-Electron Lasers (FELs)
- LPP development and deployment must continue if EUVL is to enter HVM

- FEL machine components:
 - e source/gun and injector: generates and prepares e bunch (overcome space charge effects)
 - Linac (superconducting radio frequency (SRF) cavities): accelerates e⁻ beam to relativistic speeds
 - Undulator: radiator, wiggles e⁻ packet
 - e beam dump: radiation source, must absorb enormous power
 - End station: EUV beam delivery and manipulation optics to multiple scanners
- Where can cost, efficiency, and reliability be optimized?
- Accomplished in Academia vs. Technologically Feasible

Lithographic Requirements

- An EUV FEL must power multiple scanners simultaneously
- FEL EUV source must operate with an availability of 100%
 - Redundancy of high-risk/low-cost machine components
 - Minimizing stress on long replacement time components
 - Two FELs must be run simultaneously!

Cost

- FEL EUV program must be substantially cheaper (depreciation + OpEx) and more powerful than an equivalent number of LPP sources to justify development risk
- How many EUVL sources are required for HVM?
 - 7 nm Logic roadmap from IMEC says 5-10 EUV layers
 - 3-4 L/S (>25 mJ/cm²), 2-6 contact (>35 mJ/cm²) = 10x 250 W LPP tools for ~50k wafers/month

Other: FEL Specific

- Beam Distribution
 - High power, splitting efficiency
- Power management and Facility Size
 - · On mask, on mirrors, on wafer, into beam dump, and electrical power
 - · Integrate with existing fab architecture
- Coherence
 - · Manipulate at scanner (Extended Flex-OAI?) or within distribution system
- Harmonic mitigation scheme
 - FELs produce a few percent of the fundamental power in higher harmonics
- Wavelength stability? Optical bandwidth? Power stability (Dose repro <0.2%)?</p>

FEL Layout: Two Promising Configurations

Cost of LPP vs. FEL for HVM

(\$M/year)		250 W LPP Sources	10 kW EUV ERL FEL (Scanners Powered @ 1 kW)
OpEx		8.5^{a}	23
CapEx		25.6 ^b	240
Cost per Source, First Year ^c		34.1	263
Cost to Power 10 Scanners	OpEx	85	23
	CapEx	256	240
	Total Cost First Year ^c	>341	263
	FEL Savings Each Yeard		<u>>60</u>
Uptime Per Source		Target 90%	~100%
Average Exposures Per Day (10 Scanners, Dose: 25 mJ/cm²)		13,280e	29,700

^a LPP OpEx estimates from public source requirements and component lifetimes.
^b LPP source (2013 configuration) cost from ABN AMRO Bank report on ASML: 8/21/2013.
^c CapEx is fully depreciated in the first year to simplify projections.
^d FEL savings are calculated after first year, once the sources are fully depreciated
^e Calculation of throughput aligns with the current 500 WPD at 100% uptime, 15 mJ/cm² prediction.
FEL estimates represent a first level approximation of the cost associated with a recirculating Linac operating in a RAFEL mode. Estimates were developed from numerous technical design reports of existing and planned accelerators and free-electron laser facilities as well as quotes from various vendors (Linde, Radiabeam, and Kyma).

Interaction Between Customer and Integrator

- A vendor or large manufacturing entity will be need to act as the FEL facility integrator
 - Integrator will bring multiple independent sources together for FEL construction, previously, government labs held this role
 - Most FEL equipment has been commercialized:
 - undulator, vacuum equipment, RF systems, cryomodules, cryogenic plant
 - Specialized manufacturing will revolve around the FEL configuration and injector/electron gun assembly
 - Research Labs will provide key information regarding FEL construction and operation and will quite possibly play a critical role in daily FEL operation
 - Each customer site will bring its unique set or requirements and the first generation of machines after a demo will only be a few (x2 at each site though). FELs inherently lend themselves to flexible requirements.
 - ASML will need to ensure FEL integration with NXE tool series

*Possibly YAG Pre-Pulse + CO₂ Main Pulse LPP or other innovations Gigaphoton press release: http://optics.org/news/3/7/6 Nishihara, K., et al. EUVL 2008. Tahoe.

Free-Electron Lasers as an Alternative to LPP

EUV Source Roadmap

Extreme-Ultraviolet Lithography Tools for High-Volume Manufacturing

-Erik R. Hosler

OSA International Workshop on Compact EUV & X-ray Light Sources

Additional Contributors:

Pawitter Mangat
GLOBALFOUNDRIES

Thank you

Erik R. Hosler, Ph.D.

Erik.Hosler@GLOBALFOUNDRIES.COM, 518-305-1963

